
HESSD
7, 4219–4251, 2010

Evaluation of global
continental
hydrology

S. J. Murray et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 7, 4219–4251, 2010
www.hydrol-earth-syst-sci-discuss.net/7/4219/2010/
doi:10.5194/hessd-7-4219-2010
© Author(s) 2010. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth
System Sciences (HESS). Please refer to the corresponding final paper in HESS
if available.

Evaluation of global continental
hydrology as simulated by the
Land-surface Processes and eXchanges
Dynamic Global Vegetation Model

S. J. Murray1, P. N. Foster1, and I. C. Prentice1,2,3

1QUEST, Department of Earth Sciences, Wills Memorial Building, University of Bristol,
Queens Road, Bristol, BS8 1RJ, UK
2Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
3Grantham Institute of Climate Change, and Division of Biology, Imperial College,
Silwood Park, Ascot, SL5 7PY, UK

Received: 22 June 2010 – Accepted: 28 June 2010 – Published: 6 July 2010

Correspondence to: S. J. Murray (steve.murray@bristol.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

4219

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4219/2010/hessd-7-4219-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4219/2010/hessd-7-4219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4219–4251, 2010

Evaluation of global
continental
hydrology

S. J. Murray et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Global freshwater resources are sensitive to changes in climate, land cover and popu-
lation density and distribution. The Land-surface Processes and eXchanges Dynamic
Global Vegetation Model (LPX-DGVM) is a development of the Lund-Potsdam-Jena
model with improved representation of fire-vegetation interactions. It allows simulta-5

neous consideration of the effects of changes in climate, CO2 concentration, natural
vegetation and fire regime shifts on the continental hydrological cycle. Here the model
is assessed for its ability to simulate large-scale spatial and temporal runoff patterns,
in order to test its suitability for modelling future global water resources. Comparisons
are made against observations of streamflow and a composite dataset of modelled and10

observed runoff (1986–1995).
The model captures the main features of the geographical distribution of global

runoff, but tends to overestimate runoff in much of the Northern Hemisphere (where
this can be largely accounted for by freshwater extractions and the unrealistic accu-
mulation of the simulated winter snowpack in permafrost regions) and the southern15

tropics. Interannual variability is represented reasonably well at the large catchment
scale, as are seasonal flow timings and monthly high and low flow events. Further im-
provements to the simulation of intra-annual runoff might be achieved via the addition
of river flow routing. Overestimates of runoff in some basins could likely be corrected
by the inclusion of transmission losses and direct-channel evaporation.20

1 Introduction

Accurate representations of freshwater fluxes and their responses to global environ-
mental change are needed in order to quantify the availability of global water supplies,
particularly with regard to identifying regions susceptible to floods and droughts and
for studies of global water resources in a changing world (e.g. Arnell, 1999, 2004;25

Lehner, 2006; Alcamo, 2007). Comprehensive assessments of the global water cycle
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require vegetation processes to be fully embedded in hydrological models (Cramer
et al., 2001; Gerten et al., 2004). Increasingly advanced dynamic global vegetation
models (DGVMs) are evolving into multi-purpose tools for representing land surface
processes and feedbacks influencing the major components of the hydrological cycle
(e.g. Gerten et al., 2004; Müller et al., 2006) and other exchanges of materials between5

the biosphere and the atmosphere (Arneth et al., 2010). However, so far DGVMs have
been developed and evaluated primarily for their performance with respect to vegeta-
tion and biogeochemistry. Application of DGVMs to water resources questions requires
that they be critically evaluated, and improved where necessary, using hydrological ob-
servations as the benchmark.10

Interactions between vegetation and hydrology operate on micro to macro scales.
For example, it is well established that vegetation regulates runoff at the macro scale
via interception (Winsemius et al., 2005), changes in albedo (Mylne and Rowntree,
1992), transpiration (Levis et al., 2000) and land cover change (Bosch and Hewlett,
1982; Foley et al., 2005; D’Almeida et al., 2007). Influencing runoff at the micro level15

are reductions in stomatal conductance in response to increasing atmospheric carbon
dioxide concentrations, resulting in a greater carbon dioxide intake per unit of water
transpired (Gedney et al., 2006). This physiological effect has been proposed to ac-
count for a 6% increase in mean global runoff since pre-industrial times (Betts et al.,
2007). However, its importance has been contested, as the physiological effects of20

carbon dioxide could lead to compensating increases in leaf area index (LAI) (Piao et
al., 2007; Huntington, 2008). DGVMs attempt to resolve such discrepancies by quanti-
fying the various competing processes and allowing them to work together. The extent
to which they do so correctly can only be evaluated through extensive comparison with
observations.25

This paper aims to evaluate the macro-hydrological performance of a leading DGVM
of intermediate complexity – LPX (Land-surface Processes and eXchanges: Pren-
tice et al., 2010). LPX is the most recent development from the Lund-Potsdam-
Jena (LPJ) model (Sitch et al., 2003) with improved hydrology as introduced by
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Gerten et al. (2004). We compare simulated runoff fields against observations of global
streamflow and an independent composite, model-adjusted runoff dataset.

Previous versions of LPJ have been evaluated with regard to carbon storages and
fluxes (Sitch et al., 2003), soil moisture (Wagner et al., 2003), crop phenology (Bon-
deau et al., 2007) and hydrology (Gerten et al., 2004). Comparative evaluations of LPX5

and several other DGVMs, including two versions of LPJ, are underway for seasonal,
interannual and interdecadal indicators of carbon cycling, water cycling and remotely
sensed green vegetation cover (E. M. Blyth et al., personal communication, 2010). LPJ
has been shown to perform reasonably well in comparison to similar models at both
the basin scale (thirteen US basins; Gordon et al., 2004) and the global scale (Cramer10

et al., 2001). In the former study, however, it was shown that models which prescribe
vegetation generally tend to generate more reliable hydrology than DGVMs. Gerten et
al. (2004) reported that runoff and evaporation agree well with comparable hydrologi-
cal models, although considerable discrepancies in runoff estimation persisted in some
regions, particularly in the tropics.15

2 Methods

2.1 The LPX Model

LPX simulates global biospheric dynamics through process-based representations of
biogeochemical and biogeophysical processes at the land surface at 0.5◦ spatial res-
olution, using nine plant functional types (PFTs). An in-depth discussion of carbon20

allocation and vegetation establishment was presented by Sitch et al. (2003) in LPJ,
while terrestrial biosphere parameter uncertainties have been considered by Zaehle
et al. (2005). Gerten et al. (2004) detailed the hydrological process representations,
which are briefly summarised here.

Runoff is determined as net precipitation (after interception) minus transpiration from25

two soil layers and surface evaporation from the top soil layer (Gerten et al., 2004).
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There is no built-in river routing algorithm so any runoff generated is assumed to reach
the basin outlet at the end of each model day. Soil moisture is the water remaining after
transpiration, evaporation, infiltration and runoff have been accounted for. Potential
evaporation is calculated based on the Priestley-Taylor equation (Priestley and Taylor,
1972; Hobbins et al., 2001). Transpiration is the lesser of an atmospheric demand term5

(which combines potential evaporation and surface conductance, following Monteith
(1995)) and a soil/plant moisture supply term (a maximal rate determined by plant
hydraulic properties, reduced as a function of declining soil moisture content).

2.2 Data

A global gridded model-observation composite dataset and two river discharge obser-10

vation datasets are used to evaluate LPX simulated runoff, in addition to estimates of
freshwater extractions.

Global observations of monthly runoff are relatively sparse and discrepancies in
monitoring frequency, quality and technique combine to make it difficult to synthesise
such data in a common format and assess their reliability. One source of global gridded15

runoff is a product of the ISLSCP II project: the UNH-GRDC Composite Global Runoff
Fields (Fekete et al., 1999, 2002). This represents a combination of climate-driven
water balance runoff model (WBM) outputs and Global Runoff Data Centre (GRDC)
observed river discharge observations for the period 1986–1995, on a monthly basis at
0.5◦ resolution. Observations account for 72% of the actively discharging (>3 mm/year)20

global land area (Fekete et al., 2002). River discharge measured at a point and WBM-
simulated runoff are disaggregated between pre-defined interstation domains and cor-
rected according to observations (Fekete et al., 2002). Monthly outputs are adjusted
via annual corrections to account for mistimings in intra-annual runoff which may arise
as a result of storage in excess of a month (Fekete et al., 1999).25

Observations of mean monthly global river discharge provided by the GRDC are
also used to evaluate runoff for the twelve largest catchments in the world by area
(O’Connor and Costa, 2004). Data from the furthest downstream gauging station have
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been selected, since this should approximate aggregated catchment runoff. While such
measurements are usually estimated to incur error in magnitude of between 5–10%
(Rantz, 1982) and up to 20% (Hageman and Dümenil, 1998; Dingman, 2001), these
data should still offer a solid alternative against which to benchmark simulated runoff,
with the advantage of being independent of any model.5

A dataset of monthly river discharge for 1948–2004 from 925 global rivers, account-
ing for ∼73% of global streamflow (Dai et al., 2009) is used to evaluate LPX interannual
variability in runoff. Data are predominantly composed of observations, from GRDC,
UNH and NCAR archives, but where gaps in the time-series or unmonitored regions
exist, these are infilled by using nearby gauges and the Community Land Model, ver-10

sion 3 (CLM3; Oleson et al., 2004).
Water extractions from rivers and aquifers are based on Oki et al. (2001). Oki et

al. use population distribution and irrigated land area (assumed proportional to mu-
nicipal, industrial and agricultural extractions respectively) to form 0.5◦ global gridded
annual estimates of water usage for 1995. These data are compiled from various15

sources at the country-scale (WRI, 1998) for varying time periods and linearly adjusted
to determine values for the target year.

2.3 Model set-up

A spin-up period was used to initialise the model, which was forced with input vari-
ables detrended using the lowess technique. The 1961–1990 period was recycled at20

286 ppm CO2 until the thirty year means of the slow carbon pools varied by < 2% for
each grid cell. LPX was subsequently run for 1850–2006, forced with 0.5◦ monthly
gridded fields of air temperature, precipitation, wet day frequency and cloud cover frac-
tion from the Climate Research Unit (CRU) TS 3.0 archive (e.g. Mitchell and Jones,
2005) along with global annually varying CO2 concentrations (Etheridge et al., 1996;25

IPCC, 2001) and nine fixed soil texture types (Zobler, 1986). Fractional sunshine hours
data range from 1901–2002, with 1997–1998 formed of monthly means from the previ-
ous thirty years and beyond 2002 composed of converted sun hour observations and
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synthetic data derived from daily temperature ranges. Wet day data are determined
from a combination of station measurements and synthetic wet days derived from pre-
cipitation, while being entirely synthetically-derived from precipitation from 1990 on-
wards.

3 Results5

3.1 Key features and data-model comparisons

3.1.1 Trend

LPX simulated runoff shows a decrease of 0.12 mm/year through the period 1951–2000
(Fig. 1). Simulated variations in global runoff over the 20th century compare well with
the reconstruction of Dai et al. (2009), in terms of most interannual variability features10

and the presence of a decreasing trend for 1951–2000 being captured. However, the
trend as simulated by LPX is steeper than in the Dai et al. (2009) data set.

The trend of the CRU terrestrial precipitation data used here is slight and in agree-
ment with GHCN data for the latter half of the 20th century (Bosilovich et al., 2005).
Downward trends as shown in the Dai et al. (2009) data set, and simulated by LPX,15

therefore must have other causes, e.g. increasing leaf area index (Piao et al., 2007)
leading to increased evaporative losses.

3.1.2 Interannual variability

LPX tracks the interannual variability of the composite global mean and Dai reconstruc-
tions very well, although the absolute values of runoff are overestimated by between20

65–88 mm/year and 33–76 mm/year respectively, probably at least in part due to water
abstractions not considered in the DGVM. The interannual variability in runoff appears
to be explained largely via changes in precipitation for LPX (r =0.56; p≈0), Dai recon-
structions (r =0.50; p≈0), and the ISLSCP II composite (r =0.71; p=0.02).

4225

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4219/2010/hessd-7-4219-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4219/2010/hessd-7-4219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4219–4251, 2010

Evaluation of global
continental
hydrology

S. J. Murray et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.1.3 Comparison to other models

LPX performs well when related to other similar models for simulation performance,
using the Willmott Index of Agreement (Willmott, 1982). This is a metric of simulation
quality based on the mean and variance of the outputs compared to their associated
observations, whereby 1 = perfect agreement between simulations and observations,5

and 0 = complete disagreement. When tested for interannual variability against the
Dai reconstructions and ISLSCP II composite data, LPX scores 0.98 and 0.92 re-
spectively compared to a range of 0.89 (for Gerten-LPJ) to 0.92 (“Model 2”) as re-
ported in Gerten et al. (2004). The global mean absolute deviation (bias) for LPX is
60 mm/year for the Dai reconstructions and 74 mm/year for ISLSCP II, compared to a10

range of −1471 (“Model 1”) to 442 mm/year (“Model 3”) for 663 catchments. LPX to-
tal global annual runoff averaged for the period 1961–1990 is 56 865 km3/year from a
land area of 128×106 km2, compared to 37 288 km3/year for Dai et al. (2009) from an
area of 117×106 km2 (Dai and Trenberth, 2002), and 37 075 km3/year from an area of
112×106 km2 for the ISLSCP II composite data. Incorporation of total global annual15

freshwater extractions of 3448 km3/year for 1995 (according to Oki et al., 2001) results
in a revised estimate of 53 417 km3/year. Previous estimates range from ∼36 500 km3

(Chanine, 1992) to ∼45 500 km3 (Cogley, 1991) while Gerten et al. (2004) estimated
total runoff as being 40 143 km3. LPX thus predicts global annual total runoff in excess
of previous estimates.20

3.1.4 Global runoff distribution

LPX captures the global runoff distribution well, but has a general tendency to over-
estimate runoff magnitude, particularly in the tropics and throughout much of the
Northern Hemisphere, while underestimations are typical surrounding the equator
(Fig. 2). These discrepancies are most likely born out of an imbalance in the simu-25

lated precipitation-evaporation ratio. The findings described here compare favourably
to similar studies by Sitch et al. (2003) and Gerten et al. (2004) with regard to the
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relative magnitudes of runoff across latitudinal domains, when validated against obser-
vations and macro-scale hydrological models, although the former has a bias towards
underestimation of runoff.

The incorporation of extractions (based on 1995 data) considerably improves the
simulation of runoff between 20–55◦ N in such that LPX then closely resembles the5

composite runoff distribution. The largest overestimations still remain in the south-
ern tropics, where extractions are less substantial. It should be acknowledged that a
greater proportion of streamflow observations exist in Europe, North America, South
America and parts of western Africa, where the river gauge network density is highest
(Fekete et al., 2002). ISLSCP II runoff data incorporate freshwater extractions in such10

regions and thus represent a more suitable runoff comparator. Uncertainty in runoff
evaluation is greater in regions where ISLSCP II runoff is model-generated, and partic-
ularly where population densities are high, due to the omission of water withdrawals.

LPX shows considerable overestimations of annual runoff throughout much of Cen-
tral and Northern America, parts of South America, the tropics of Africa, south and15

eastern Asia and eastern Europe (Fig. 3a). Underestimations are largely restricted to
equatorial regions, central Europe, the UK, and the northernmost latitudes. LPX best
represents annual runoff in the Sahel, central and western Asia, parts of North Amer-
ica, south-western South America and southern Australia. These findings are generally
consistent with those of Gerten et al. (2004) using LPJ, with improvements apparent in20

the north-west of North America and some parts of semi-arid northern Africa.
When including freshwater extractions (Fig. 3b and c), LPX shows a considerable

reduction in the overestimates for much of Europe, North America and East Asia. Some
regions of China, India and the mouth of the Nile river, where runoff is overestimated
by LPX, are shown to be underestimated when withdrawals are incorporated.25

3.1.5 Interannual variability at the catchment scale

LPX grid cells that fall within the boundaries of the selected river catchments (GRDC,
2007) have been used to test interannual variability. The model tends to perform well
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in replicating trends and is often within, or close to the periphery of the runoff envelope
shown by the composite and monthly summed converted river discharge data (Fig. 4).
For the basins being tested, LPX best represents the interannual runoff of the Amazon,
Amur, Yenisei, Lena and Zambezi, and represents the Congo well with respect to the
composite data. Runoff for the other catchments tends to be overestimated, particularly5

for the Nile, Mississippi, Parana and Niger. Of the catchments which are coincident
with those validated by Gerten et al. (2004), albeit for different time periods, LPX better
simulates interannual variability of runoff for the Amazon, Nile and Yenisei, but more
greatly overestimates for the Congo and Mississippi.

The inclusion of water extractions for 1995 either improves or does not adversely10

affect the simulation of runoff in most catchments, especially the Mississippi. The one
exception is the Yangtze, where extractions cause simulated runoff to fall below the
ISLSCP II estimate. Cases where runoff still remains in excess of observations, in
spite of extraction being included (e.g. the Nile, Amur, Parana, Niger and Zambezi
catchments) may be due to the absence of river routing and human infrastructure (most15

notably dams) from the model, causing flow impedances and enhanced evaporation to
be overlooked.

3.1.6 Seasonal variability at the catchment scale

While the seasonality of flows is generally well represented by LPX at the catchment
scale, there is a tendency towards early estimation of the extremes of runoff by at20

least a month (Fig. 5). The greater discrepancies lie in the magnitudes of summed
monthly flow. With the exception of the Amur, Yenisei and Yangtze, LPX does not repli-
cate the peaks in runoff as seen in the river discharge records. Gerten et al. (2004)
report broadly similar findings for the coincident catchments (for differing time peri-
ods), although LPX better represents the seasonal peak of the Yenisei and achieves25

a slightly better, but still poor, replication of intra-annual flow in the Nile. However,
monthly flow timings in the Mississippi are better captured by the former version of the
model. Simulated runoff generally tracks CRU TS 3.0 intra-annual precipitation due to
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the assumption of runoff being generated and outputted from the basin within a given
day. As a result, the model tends to overlook the multiple runoff regulators present in
river catchments, causing the timings of simulated peak flows to generally be out of
synchrony with observations. The ISLSCP II composite data, which are formed via a
simple routing mechanism of runoff within the WBM (Fekete et al., 1999), fare little bet-5

ter in demonstrating accurate flow timings in comparison to LPX. However, while LPX
is more likely to overestimate the runoff from northern latitude catchments, Gerten et
al. (2004) note a deficit in comparison to observations, which is attributed to system-
atic errors in high-latitude precipitation data, and the simplistic model representation of
snow accumulation and melt.10

3.1.7 Global flow timings

At the individual cell scale, LPX has a slight propensity towards late prediction of global
peak intra-annual flow (mean difference of 0.068 months compared to the compos-
ite dataset, in contrast to ∼ 1 month early with the former version of LPJ: Gerten et
al. (2004)), although there are notable regional differences (Fig. 6a, b and c). The15

Sahel, Arabian Peninsula, central North America, central Asia and parts of central
Africa are most poorly captured, due to the difficulty associated with discerning non-
routed monthly runoff maximums in consistently dry climates (and especially since the
extremities of the annual hydrographs are dampened due to the absence of channel
evaporation and transmission loss processes from the model). Aside from these no-20

table exceptions, the maximum month of runoff is generally well simulated for most of
the Northern Hemisphere. The Southern Hemisphere shows a bias towards a slight
early estimation of runoff.

3.2 Comparison with various indices of drought

The reliable forecasting of droughts is critical to all simulations of global water re-25

sources. Unlike flooding, the definition of drought is not agreed, due to differing
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perceptions of water shortage magnitude and duration between regions (e.g. Dracup
et al., 1980). Broadly one can distinguish meteorological drought (shortages of pre-
cipitation), hydrological drought (shortages of runoff and/or streamflow), agricultural or
ecological drought (soil moisture shortages) and socio-economic drought (a shortage
of water to support consumptive economic demand) (Keyantash and Dracup, 2002).5

This section focuses on the simulation of the physical forms of drought and the appli-
cation of hydrological statistics to assess high and low flows.

3.2.1 Comparison of LPX to the Palmer Drought Severity Index

LPX annual and monthly runoff is compared to the Palmer Drought Severity Index
(PDSI; Palmer, 1965). The PDSI is a hybrid index based on antecedent precipitation,10

moisture supply and demand (following Thornthwaite, 1948; Dai et al., 2004). The in-
dex is most effective on an annual basis, while interpretation of monthly soil moisture
values for northern latitudes requires caution due to the exclusion of snow accumu-
lation and potential evaporation being assumed (according to Thornthwaite (1948)).
However, the PDSI has been shown to correlate with soil moisture content during warm15

seasons in Illinois and Eurasia, and streamflow from large global catchments (Dai et
al., 2004). Regional-scale studies of recent and historical droughts have been con-
ducted using the PDSI (e.g. Karl, 1986; Lloyd-Hughes and Saunders, 2002; Fye et al.,
2003; Ntale and Gan, 2003), while Dai et al. (1998) also used this index to estimate
the influence of the El Niño-Southern Oscillation on global variability in wet and dry20

periods.
With the exception of the final years of the twentieth century, the direction of the PDSI

trend, in showing a global tendency towards drying, is reproduced by LPX (Fig. 7). In-
terannual variability is also generally captured well, but with runoff and precipitation
preceding the PDSI by a year in some cases. LPX runoff (r = 0.49; p= 0.001) repli-25

cates the PDSI trend much better than precipitation alone (r =−0.0009; p=0.995).
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3.2.2 Comparison of LPX with high and low flow observations

In order to determine the suitability of LPX as a tool for predicting future shortage and
surplus in the regional water budget, LPX summed total catchment monthly runoff is
compared against GRDC runoff-equivalent monthly river discharge (GRDC, 2007) for
a selection of large catchments on a per-event basis.5

LPX consistently overestimates monthly peak flows in the Mississippi catchment
(possibly due to the omission of human abstractions), and often mistimes high flows
by a month (Fig. 8; r = 0.57; p≈ 0). The Mississippi flood of 1973 (e.g. Deutsch and
Ruggles, 1974; Chin et al., 1975) is reproduced by LPX but at three times the peak
magnitude and two months early. There is also a tendency to overestimate low flow10

events while some timings are incongruent. Peak flow magnitudes are represented
much more successfully for the Yangtze catchment, while low flows are underestimated
(Fig. 8; r = 0.76; p≈ 0). Flow timings are generally well simulated, but sometimes dis-
parate by a month. The Yenisei is captured very well with regard to the simulation of
peak flow magnitudes and timings (Fig. 8; r = 0.87; p≈ 0), but again, while low flow15

timings are modelled well, event magnitudes are consistently underestimated. Over-
all however, peak and low flow timings are generally well captured for the catchments
tested, and reasonable simulations of flow magnitudes are shown.

3.2.3 Simulation of high flows and various forms of droughts

Basin sums of monthly LPX runoff, GRDC observed streamflow (converted to20

mm/month) and CRU TS 3.0 precipitation are used to assess the simulation of hy-
drological and meteorological drought respectively. Agricultural or ecological drought
is evaluated using gravimetric soil moisture observation point data from the Global
Soil Moisture Data Bank (GSMDB; Robock et al., 2000) for river catchments in Rus-
sia. Data are available for the upper 1m soil layer of natural grass plots of ∼ 0.1 ha25

for 1978–1985. These have been formed by averaging four measurement points in
each plot every 10 days during the growing season and once per month during winter
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(Robock et al., 2000). Monthly means have subsequently been created for each of the
Amur (11 soil moisture stations), Lena (17 stations) and Ob (13 stations) catchments.

In order to assess the ability of the model to capture varying forms of drought, statis-
tical metrics are used as a means to characterise high and low flows. Q95 (the number
of months in which flow magnitude is exceeded 95% of the time; low flows) and Q55

(flow exceeded 5% of the time; high flows) metrics are applied to each variable for
each basin (Table 1).

LPX appears capable of capturing all forms of physical high flows (with the exception
of soil moisture in cases where observations are limited). Low flows are reasonably well
captured, with hydrological “droughts” simulated most accurately.10

Variability in the magnitude of LPX monthly runoff generally mimics that of precipita-
tion, river discharge and soil moisture (Fig. 9). The spring melt is consistently overes-
timated and in some cases simulated runoff exceeds precipitation (particularly in the
Lena and Ob catchments), while always exceeding GRDC river discharge. This prob-
lem occurs due to the simulated accumulation of winter precipitation into the snowpack15

when monthly temperatures are <0 ◦C (Gerten et al., 2004). Daily infiltration when tem-
peratures exceed 0 ◦C is omitted, causing LPX spring runoff to also exceed observed
river discharge when this enhanced winter storage melts.

4 Discussion and conclusions

LPX is able to adequately capture the global distribution of runoff, interannual and20

seasonal runoff variability at the continental and catchment scale, and represents high
and low flows reasonably well in large catchments. Several factors can induce a lag
in the arrival of water at the catchment outlet (Kuhl and Miller, 1992; Costa and Foley,
1999), highlighting the need to include water routing in DGVMs (Marengo et al., 1994).
Some overestimations (particularly between 20–55◦ N) can be accounted for by water25

extractions. However, errors in the precipitation data (e.g. Fekete et al., 2004; Biemans
et al., 2009) may also be involved. Widespread overestimation of runoff may also be
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attributed in part to LPX underestimating global rainfall interception (Murray, 2010).
Aside from the Yenisei, the poor agreement in runoff extremes and timing for the high

latitude catchments is likely due to simplified representation of snow accumulation and
melt dynamics, in addition to the absence of permafrost in the model. The incorporation
of a glacial mass-balance component into the DGVM may bring improvements.5

LPX, in common with many hydrological models (e.g. Döll et al., 2003) is unable
to reproduce the interannual and seasonal peak in runoff observed in semi-arid catch-
ments such as the Nile and Niger. The Niger and Nile are unusual cases in that beyond
a point, discharge decreases with distance downstream. For example, approximately
half of the Nile’s annual flow is lost from the Sudd marshes via evaporation (including10

that directly from the channel) and transmission losses (Ibrahim, 1984). Commonly
overlooked in global hydrological modelling, transmission losses must be considered
in order for simulations to perform well in dry catchments.

Wet and dry periods are represented reasonably well through comparison at the
global scale to the PDSI. In addition, high and low flow events are generally simulated15

well for the Mississippi, Yangtze and Yenisei, and flow event timings are generally cap-
tured very well. High and low flows are modelled well and various forms of drought
are simulated reasonably. Spring melt in the selected Russian basins is considerably
overestimated due to the unrealistic accumulation of the winter snowpack.

Various factors not incorporated in the DGVM may contribute to differences between20

observed and simulated water fluxes. Most critically, monitored river discharge is of-
ten subject to significant human abstractions (e.g. Döll et al., 2009). The exclusion of
such an important component of estimated global river flows from DGVMs and hydro-
logical models leads to consistent overestimation of runoff in populated catchments.
The absence of wetlands and dams in the model affects both the peaks in flow rate25

and volume of discharge retained, and could be improved via inclusion of flow routing
(e.g. Olivera et al., 2000; Oki et al., 2001). In some cases, discrepancies might be
attributed to the unavailability of river discharge data to match the period of simulated
runoff, or to the fact that the gauging stations are not situated at the most distal point
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of the river. Further improvement of the hydrological element of LPX will require the
inclusion of human abstractions and a flow routing scheme, and the representation of
transmission and direct-channel evaporation losses (particularly in semi-arid regions).
Such additions to the DGVM should produce a step-change improvement to global
runoff modelling and will facilitate the application of LPX as a tool for flood and drought5

prediction.
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Table 1. Q5 and Q95 monthly totals of summed monthly LPX runoff, GRDC river discharge,
CRU TS 3.0 precipitation and mean GSMDB soil moisture for three Russian catchments.

Runoff
River

Discharge Precipitation
Soil

Moisture

Q5 Q95 Q5 Q95 Q5 Q95 Q5 Q95

Amur 1 53 4 71 3 72 46 95

Lena 1 40 1 43 1 80 42 95

Ob 1 52 1 68 2 89 2 93
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Fig. 1. Global Mean Annual Runoff as simulated by LPX for 1951–2000 (with freshwater ex-
tractions for 1995) and as represented by the ISLSCP II composite dataset for 1986–1995 in
relation to global mean annual precipitation.
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Fig. 2. Mean Global Annual Runoff Distribution for the period 1986–1995 per 1◦ latitudinal
band as simulated by LPX and as represented by the ISLSCP II composite dataset. Freshwater
extractions for 1995 are based on Oki et al. (2001).
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Fig. 3. (A) Difference in LPX mean annual runoff (mm/year) from the ISLSCP II composite
dataset for the period 1986–1995 (B) Difference in mean annual runoff for LPX and ISLSCP II
(1986–1995) with 1995 annual freshwater extractions totals incorporated (mm/year; based on
Oki et al. 2001) (C) Difference between former two figures to highlight regions where fresh-
water extractions (mm/year) are important in influencing the discrepancies between LPX and
ISLSCP II runoff estimates.
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Fig. 4. Interannual variability in mean annual runoff for twelve selected catchments as repre-
sented by LPX, the ISLSCP II composite data and, where available, GRDC disaggregated river
discharge observations. LPX simulated runoff with freshwater extractions for 1995 are also
shown.
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ISLSCP II composite data and GRDC disaggregated mean monthly river discharge observa-
tions converted to runoff equivalent. Also shown are CRU TS 3.0 monthly summed precipitation
observations.
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Fig. 6. (A) Month of maximum runoff as simulated by the LPX-DGVM. (B) Month of maximum
runoff for as represented by the ISLSCP II composite dataset. (C) Difference in months between
month of maximum runoff of LPX from the ISLSCP II composite dataset.
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Fig. 7. Global Mean Annual Runoff as simulated by LPX versus Global Mean Annual Palmer
Drought Severity Index (PDSI) and Global Mean Precipitation.
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Fig. 8. Total summed monthly catchment LPX runoff versus GRDC runoff equivalent river
discharge for the Mississippi, Yangtze and Yenisei catchments (1970–1979).
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Fig. 9. Monthly summed catchment LPX runoff, CRU TS 3.0 precipitation, GRDC river dis-
charge (all mm/month) and Global Soil Moisture Data Bank soil moisture (mm×104/month) for
the Amur, Lena and Ob catchments.
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